Top 28 부분적 분 공식 Best 101 Answer

You are looking for information, articles, knowledge about the topic nail salons open on sunday near me 부분적 분 공식 on Google, you do not find the information you need! Here are the best content compiled and compiled by the Toplist.pilgrimjournalist.com team, along with other related topics such as: 부분적 분 공식 부분적분 그적미적, 정적분 부분적분, 부분적분 예제, 부분적분법 쉽게, 부분적분 문제, 부분적분 3개, 부분적분법 공식, 부분적분 공식 증명


부분적분 쉽게 하기 (tabular integration)
부분적분 쉽게 하기 (tabular integration)


부분 적분 – 위키백과, 우리 모두의 백과사전

  • Article author: ko.wikipedia.org
  • Reviews from users: 46578 ⭐ Ratings
  • Top rated: 3.5 ⭐
  • Lowest rated: 1 ⭐
  • Summary of article content: Articles about 부분 적분 – 위키백과, 우리 모두의 백과사전 미적분학에서 부분 적분(部分積分, 영어: integration by parts)은 두 함수의 곱을 적분하는 기법 … “부분적분”. 《수학노트》. “Integration by parts”. …
  • Most searched keywords: Whether you are looking for 부분 적분 – 위키백과, 우리 모두의 백과사전 미적분학에서 부분 적분(部分積分, 영어: integration by parts)은 두 함수의 곱을 적분하는 기법 … “부분적분”. 《수학노트》. “Integration by parts”.
  • Table of Contents:

정의[편집]

예[편집]

같이 보기[편집]

각주[편집]

외부 링크[편집]

부분 적분 - 위키백과, 우리 모두의 백과사전
부분 적분 – 위키백과, 우리 모두의 백과사전

Read More

[적분] 16장. 적분법: 부분적분 :: Herald’s Lab

  • Article author: herald-lab.tistory.com
  • Reviews from users: 35526 ⭐ Ratings
  • Top rated: 3.7 ⭐
  • Lowest rated: 1 ⭐
  • Summary of article content: Articles about [적분] 16장. 적분법: 부분적분 :: Herald’s Lab 부정적분의 부분적분에서 첨가되는 여러 적분상수들은 총합의 개념으로 마지막 결론 부분에서 간단히 C로 제시한다. 점화공식. □. 부분적분을 활용해 … …
  • Most searched keywords: Whether you are looking for [적분] 16장. 적분법: 부분적분 :: Herald’s Lab 부정적분의 부분적분에서 첨가되는 여러 적분상수들은 총합의 개념으로 마지막 결론 부분에서 간단히 C로 제시한다. 점화공식. □. 부분적분을 활용해 … 미분법의 곱법칙(product rule)에 대응되는 부분적분법(integration by parts, IBP)을 알아보자. ※ The IBP [1] Suppose that u(x) and v(x) are differentiable functions. [2] The product rule in terms of di..Math, Science, Artificial Intelligence
  • Table of Contents:

TAG

관련글 관련글 더보기

인기포스트

티스토리툴바

[적분] 16장. 적분법: 부분적분 :: Herald's Lab
[적분] 16장. 적분법: 부분적분 :: Herald’s Lab

Read More

부분적 분 공식

  • Article author: orbi.kr
  • Reviews from users: 19325 ⭐ Ratings
  • Top rated: 4.0 ⭐
  • Lowest rated: 1 ⭐
  • Summary of article content: Articles about 부분적 분 공식 부분적분은 공식을 외운다고 끝이 아니고, 주의해야 할 점이 많습니다. 합리적인 u, v 설정 : 각 함수의 미분적분 용이성 분석. 외운 식의 구조를 보면 알 수 있듯이 … …
  • Most searched keywords: Whether you are looking for 부분적 분 공식 부분적분은 공식을 외운다고 끝이 아니고, 주의해야 할 점이 많습니다. 합리적인 u, v 설정 : 각 함수의 미분적분 용이성 분석. 외운 식의 구조를 보면 알 수 있듯이 …
  • Table of Contents:
부분적 분 공식
부분적 분 공식

Read More

[적분] 4. 부분적분 — Lyssion 스터디 노트

  • Article author: lyssion-studynote.tistory.com
  • Reviews from users: 6828 ⭐ Ratings
  • Top rated: 3.4 ⭐
  • Lowest rated: 1 ⭐
  • Summary of article content: Articles about [적분] 4. 부분적분 — Lyssion 스터디 노트 부분적분법 부정적분은 미분의 역작용이므로 모든 적분 공식과 계산 기법들은 미분 공식에서 파생된다. 부분적분 또한 곱의 미분법에서 출발한다. …
  • Most searched keywords: Whether you are looking for [적분] 4. 부분적분 — Lyssion 스터디 노트 부분적분법 부정적분은 미분의 역작용이므로 모든 적분 공식과 계산 기법들은 미분 공식에서 파생된다. 부분적분 또한 곱의 미분법에서 출발한다. 부분적분법 부정적분은 미분의 역작용이므로 모든 적분 공식과 계산 기법들은 미분 공식에서 파생된다. 부분적분 또한 곱의 미분법에서 출발한다. 미분가능한 함수 $f(x)$, $g(x)$에 대해 $$ \{f(x)g(x)\}’=f'(x)g..전자공학 반도체 정보과학 기본수학전자공학 반도체 정보과학 공부방
  • Table of Contents:

블로그 메뉴

공지사항

인기 글

태그

최근 댓글

최근 글

티스토리

부분적분법

See also  Top 15 바리 스타 협회 Top Answer Update

부분적분을 이용한 적분 계산

티스토리툴바

[적분] 4. 부분적분 — Lyssion 스터디 노트
[적분] 4. 부분적분 — Lyssion 스터디 노트

Read More


See more articles in the same category here: Top 858 tips update new.

위키백과, 우리 모두의 백과사전

미적분학에서 부분 적분(部分積分, 영어: integration by parts)은 두 함수의 곱을 적분하는 기법이다.[1][2][3][4][5]

정의 [ 편집 ]

만약 I ⊆ R {\displaystyle I\subseteq \mathbb {R} } 가 구간이며 u , v : I → R {\displaystyle u,v\colon I\to \mathbb {R} } 가 연속 미분 가능 함수라면 (도함수 u ′ , v ′ {\displaystyle u’,v’} 가 연속 함수라면), 다음이 성립한다.[2]

∫ u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) − ∫ u ′ ( x ) v ( x ) d x {\displaystyle \int u(x)v'(x)\mathrm {d} x=u(x)v(x)-\int u'(x)v(x)\mathrm {d} x}

이를 u ′ ( x ) d x = d u {\displaystyle u'(x)\mathrm {d} x=\mathrm {d} u} 및 v ′ ( x ) d x = d v {\displaystyle v'(x)\mathrm {d} x=\mathrm {d} v} 를 통해 간략히 쓰면 다음과 같다.

∫ u d v = u v − ∫ v d u {\displaystyle \int u\mathrm {d} v=uv-\int v\mathrm {d} u}

만약 u , v : [ a , b ] → R {\displaystyle u,v\colon [a,b]\to \mathbb {R} } 가 연속 미분 가능 함수라면, 다음이 성립한다.[2]

∫ a b u ( x ) v ′ ( x ) d x = [ u ( x ) v ( x ) ] a b − ∫ a b u ′ ( x ) v ( x ) d x = u ( b ) v ( b ) − u ( a ) v ( a ) − ∫ a b u ′ ( x ) v ( x ) d x {\displaystyle {\begin{aligned}\int _{a}^{b}u(x)v'(x)\mathrm {d} x&={\bigg [}u(x)v(x){\bigg ]}_{a}^{b}-\int _{a}^{b}u'(x)v(x)\mathrm {d} x\\&=u(b)v(b)-u(a)v(a)-\int _{a}^{b}u'(x)v(x)\mathrm {d} x\end{aligned}}}

증명 [ 편집 ]

곱의 법칙에 따라 다음이 성립한다.

u v ′ = ( u v ) ′ − u ′ v {\displaystyle uv’=(uv)’-u’v}

양변은 모두 연속 함수이므로 부정적분이 존재한다. 양변에 부정적분을 취하면 다음을 얻으므로 부정적분에 대한 명제가 성립한다.[3]

∫ u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) − ∫ u ′ ( x ) v ( x ) d x {\displaystyle \int u(x)v'(x)\mathrm {d} x=u(x)v(x)-\int u'(x)v(x)\mathrm {d} x}

또한 양변은 모두 적분 가능하며, 양변에 적분을 취하면 다음을 얻으므로 정적분의 경우가 성립한다.[2]

∫ a b u ( x ) v ′ ( x ) d x = [ u ( x ) v ( x ) ] a b − ∫ a b u ′ ( x ) v ( x ) d x {\displaystyle \int _{a}^{b}u(x)v'(x)\mathrm {d} x={\bigg [}u(x)v(x){\bigg ]}_{a}^{b}-\int _{a}^{b}u'(x)v(x)\mathrm {d} x}

LIATE 법칙 (또는 로.다.삼.지 법칙) [ 편집 ]

이 명제에서는 주어진 적분에서 u {\displaystyle u} 와 d v {\displaystyle \mathrm {d} v} 를 선택하는 방법을 밝히지는 않는데, 보통 도함수가 비교적 간단한 부분을 u {\displaystyle u} 로 두거나, 원함수가 비교적 간단한 부분을 v ′ {\displaystyle v’} 으로 두는 것이 좋다. 도함수가 자기 자신보다 단순한 정도에 따라, 두 함수 가운데 로그 함수, 역삼각 함수, 대수적 함수, 삼각 함수, 지수 함수에서 먼저 나오는 유형에 속하는 하나를 u {\displaystyle u} 로 삼는 법칙을 제시한 저자도 존재하며, 이러한 법칙을 함수 유형들의 첫자들을 따 LIATE 법칙(영어: LIATE rule)이라고 부른다. 즉 로그함수, 역삼각함수, 다항함수, 삼각함수, 지수함수 순으로 ‘왼쪽 방향’으로 갈수록 미분에 용이하며, ‘오른쪽 방향’으로 갈수록 적분에 용이하다는 것이다.[6] 그러나 이 법칙은 때로 옳지 않을 수 있다.

따름정리 [ 편집 ]

만약 I ⊆ R {\displaystyle I\subseteq \mathbb {R} } 가 구간이며 u , v : I → R {\displaystyle u,v\colon I\to \mathbb {R} } 가 n {\displaystyle n} 번 연속 미분 가능 함수라면 ( n {\displaystyle n} 계 도함수 u ( n ) , v ( n ) {\displaystyle u^{(n)},v^{(n)}} 이 연속 함수라면), 다음이 성립한다.[3]

∫ u ( x ) v ( n ) ( x ) d x = ∑ k = 0 n − 1 ( − 1 ) k u ( k ) ( x ) v ( n − 1 − k ) ( x ) + ( − 1 ) n ∫ u ( n ) ( x ) v ( x ) d x {\displaystyle \int u(x)v^{(n)}(x)\mathrm {d} x=\sum _{k=0}^{n-1}(-1)^{k}u^{(k)}(x)v^{(n-1-k)}(x)+(-1)^{n}\int u^{(n)}(x)v(x)\mathrm {d} x}

이는 부분 적분을 반복하여 증명할 수 있다. 이러한 적분을 풀 때에는 보통 이 공식에 대입하는 대신 부분 적분을 직접 반복하거나 표를 사용한다.

예 [ 편집 ]

첫째 예 [ 편집 ]

부정적분

∫ x 2 ln ⁡ x d x {\displaystyle \int x^{2}\ln x\mathrm {d} x}

을 구하자. u = ln ⁡ x {\displaystyle u=\ln x} 이며 d v = x 2 d x {\displaystyle \mathrm {d} v=x^{2}\mathrm {d} x} 라고 하자. 그러면 d u = ( d x ) / x {\displaystyle \mathrm {d} u=(\mathrm {d} x)/x} 이며 (상수차를 무시하면) v = x 3 / 3 {\displaystyle v=x^{3}/3} 이다. 부분 적분을 적용하면 다음을 얻는다.[1]

∫ x 2 ln ⁡ x d x {\displaystyle \int x^{2}\ln x\mathrm {d} x} = x 3 3 ln ⁡ x − 1 3 ∫ x 2 d x {\displaystyle ={\frac {x^{3}}{3}}\ln x-{\frac {1}{3}}\int x^{2}\mathrm {d} x} = x 3 3 ln ⁡ x − 1 9 x 3 + C {\displaystyle ={\frac {x^{3}}{3}}\ln x-{\frac {1}{9}}x^{3}+C}

둘째 예 [ 편집 ]

부정적분

∫ arcsin ⁡ x d x {\displaystyle \int \arcsin x\mathrm {d} x}

를 구하자. u = arcsin ⁡ x {\displaystyle u=\arcsin x} 이며 d v = d x {\displaystyle \mathrm {d} v=\mathrm {d} x} 라고 하자. 그러면 d u = ( d x ) / 1 − x 2 {\displaystyle \mathrm {d} u=(\mathrm {d} x)/{\sqrt {1-x^{2}}}} 이며 v = x {\displaystyle v=x} 이다. 부분 적분을 적용하면 다음을 얻는다.[3]

∫ arcsin ⁡ x d x {\displaystyle \int \arcsin x\mathrm {d} x} = x arcsin ⁡ x − ∫ x 1 − x 2 d x {\displaystyle =x\arcsin x-\int {\frac {x}{\sqrt {1-x^{2}}}}\mathrm {d} x} = x arcsin ⁡ x + 1 2 ∫ d ( 1 − x 2 ) 1 − x 2 {\displaystyle =x\arcsin x+{\frac {1}{2}}\int {\frac {\mathrm {d} (1-x^{2})}{\sqrt {1-x^{2}}}}} = x arcsin ⁡ x + 1 − x 2 + C {\displaystyle =x\arcsin x+{\sqrt {1-x^{2}}}+C}

셋째 예 [ 편집 ]

부정적분

∫ x 2 sin ⁡ x d x {\displaystyle \int x^{2}\sin x\mathrm {d} x}

을 구하자. u = x 2 {\displaystyle u=x^{2}} 이며 d v = sin ⁡ x d x {\displaystyle \mathrm {d} v=\sin x\mathrm {d} x} 라고 하자. 그러면 d u = 2 x {\displaystyle \mathrm {d} u=2x} 이며 v = − cos ⁡ x {\displaystyle v=-\cos x} 이다. 부분 적분을 적용하면 다음을 얻는다.

∫ x 2 sin ⁡ x d x = − x 2 cos ⁡ x + 2 ∫ x cos ⁡ x d x {\displaystyle \int x^{2}\sin x\mathrm {d} x=-x^{2}\cos x+2\int x\cos x\mathrm {d} x}

우변의 마지막 항의 적분에서 u = x {\displaystyle u=x} , d v = cos ⁡ x d x {\displaystyle \mathrm {d} v=\cos x\mathrm {d} x} , d u = d x {\displaystyle \mathrm {d} u=\mathrm {d} x} , v = sin ⁡ x {\displaystyle v=\sin x} 라고 하여 다시 부분 적분을 적용하면 다음을 얻는다.

∫ x cos ⁡ x d x {\displaystyle \int x\cos x\mathrm {d} x} = x sin ⁡ x − ∫ sin ⁡ x d x {\displaystyle =x\sin x-\int \sin x\mathrm {d} x} = x sin ⁡ x + cos ⁡ x + C {\displaystyle =x\sin x+\cos x+C}

따라서 구하려는 적분은 다음과 같다.[1]

∫ x 2 sin ⁡ x d x = − x 2 cos ⁡ x + 2 x sin ⁡ x + 2 cos ⁡ x + C {\displaystyle \int x^{2}\sin x\mathrm {d} x=-x^{2}\cos x+2x\sin x+2\cos x+C}

넷째 예 [ 편집 ]

부정적분

∫ x 2 − 1 d x {\displaystyle \int {\sqrt {x^{2}-1}}\mathrm {d} x}

을 구하자. u = x 2 − 1 {\displaystyle u={\sqrt {x^{2}-1}}} 이며 d v = d x {\displaystyle \mathrm {d} v=\mathrm {d} x} 라고 하자. 그러면 d u = ( x / x 2 − 1 ) d x {\displaystyle \mathrm {d} u=(x/{\sqrt {x^{2}-1}})\mathrm {d} x} 이며 v = x {\displaystyle v=x} 이다. 부분 적분을 적용하면 다음을 얻는다.[4]

∫ x 2 − 1 d x {\displaystyle \int {\sqrt {x^{2}-1}}\mathrm {d} x} = x x 2 − 1 − ∫ x 2 x 2 − 1 d x {\displaystyle =x{\sqrt {x^{2}-1}}-\int {\frac {x^{2}}{\sqrt {x^{2}-1}}}\mathrm {d} x} = x x 2 − 1 − ∫ x 2 − 1 d x − ∫ d x x 2 − 1 {\displaystyle =x{\sqrt {x^{2}-1}}-\int {\sqrt {x^{2}-1}}\mathrm {d} x-\int {\frac {\mathrm {d} x}{\sqrt {x^{2}-1}}}} = x x 2 − 1 − ln ⁡ | x + x 2 − 1 | − ∫ x 2 − 1 d x {\displaystyle =x{\sqrt {x^{2}-1}}-\ln |x+{\sqrt {x^{2}-1}}|-\int {\sqrt {x^{2}-1}}\mathrm {d} x}

따라서 구하려는 적분은 다음과 같다.[4]

∫ x 2 − 1 d x = 1 2 x x 2 − 1 − 1 2 ln ⁡ | x + x 2 − 1 | + C {\displaystyle \int {\sqrt {x^{2}-1}}\mathrm {d} x={\frac {1}{2}}x{\sqrt {x^{2}-1}}-{\frac {1}{2}}\ln |x+{\sqrt {x^{2}-1}}|+C}

다섯째 예 [ 편집 ]

다음과 같은 두 적분을 구하자.

∫ e a x cos ⁡ b x d x {\displaystyle \int e^{ax}\cos bx\mathrm {d} x} ∫ e a x sin ⁡ b x d x {\displaystyle \int e^{ax}\sin bx\mathrm {d} x}

이 둘에 각각 부분 적분을 적용하면 다음을 얻는다.

∫ e a x cos ⁡ b x d x {\displaystyle \int e^{ax}\cos bx\mathrm {d} x} = 1 b ∫ e a x d ( sin ⁡ b x ) {\displaystyle ={\frac {1}{b}}\int e^{ax}\mathrm {d} (\sin bx)} = 1 b e a x sin ⁡ b x − a b ∫ e a x sin ⁡ b x d x {\displaystyle ={\frac {1}{b}}e^{ax}\sin bx-{\frac {a}{b}}\int e^{ax}\sin bx\mathrm {d} x}

∫ e a x sin ⁡ b x d x {\displaystyle \int e^{ax}\sin bx\mathrm {d} x} = − 1 b ∫ e a x d ( cos ⁡ b x ) {\displaystyle =-{\frac {1}{b}}\int e^{ax}\mathrm {d} (\cos bx)} = − 1 b e a x cos ⁡ b x + a b ∫ e a x cos ⁡ b x d x {\displaystyle =-{\frac {1}{b}}e^{ax}\cos bx+{\frac {a}{b}}\int e^{ax}\cos bx\mathrm {d} x}

즉, 다음과 같은 연립 방정식이 성립한다.

b ∫ e a x cos ⁡ b x d x + a ∫ e a x sin ⁡ b x d x = e a x sin ⁡ b x {\displaystyle b\int e^{ax}\cos bx\mathrm {d} x+a\int e^{ax}\sin bx\mathrm {d} x=e^{ax}\sin bx} a ∫ e a x cos ⁡ b x d x − b ∫ e a x sin ⁡ b x d x = e a x cos ⁡ b x {\displaystyle a\int e^{ax}\cos bx\mathrm {d} x-b\int e^{ax}\sin bx\mathrm {d} x=e^{ax}\cos bx}

따라서 구하려는 적분은 다음과 같다.[4]

∫ e a x cos ⁡ b x d x = 1 a 2 + b 2 e a x ( a cos ⁡ b x + b sin ⁡ b x ) + C {\displaystyle \int e^{ax}\cos bx\mathrm {d} x={\frac {1}{a^{2}+b^{2}}}e^{ax}(a\cos bx+b\sin bx)+C} ∫ e a x sin ⁡ b x d x = 1 a 2 + b 2 e a x ( a sin ⁡ b x − b cos ⁡ b x ) + C {\displaystyle \int e^{ax}\sin bx\mathrm {d} x={\frac {1}{a^{2}+b^{2}}}e^{ax}(a\sin bx-b\cos bx)+C}

여섯째 예 [ 편집 ]

다음과 같은 적분을 구하자.

∫ d x ( x 2 + a 2 ) 2 ( a > 0 ) {\displaystyle \int {\frac {\mathrm {d} x}{(x^{2}+a^{2})^{2}}}\qquad (a>0)}

다음과 같은 부분 적분을 사용하자 (구하려는 적분에 직접 적용하지 않았음에 주의하자).

∫ d x x 2 + a 2 {\displaystyle \int {\frac {\mathrm {d} x}{x^{2}+a^{2}}}} = x x 2 + a 2 + 2 ∫ x 2 ( x 2 + a 2 ) 2 d x {\displaystyle ={\frac {x}{x^{2}+a^{2}}}+2\int {\frac {x^{2}}{(x^{2}+a^{2})^{2}}}\mathrm {d} x} = x x 2 + a 2 + 2 ∫ d x x 2 + a 2 − 2 a 2 ∫ d x ( x 2 + a 2 ) 2 {\displaystyle ={\frac {x}{x^{2}+a^{2}}}+2\int {\frac {\mathrm {d} x}{x^{2}+a^{2}}}-2a^{2}\int {\frac {\mathrm {d} x}{(x^{2}+a^{2})^{2}}}}

따라서 구하려는 적분은 다음과 같다.[4]

∫ d f x ( x 2 + a 2 ) 2 {\displaystyle \int {\frac {\mathrm {d} fx}{(x^{2}+a^{2})^{2}}}} = 1 2 a 2 x x 2 + a 2 + 1 2 a 2 ∫ d x x 2 + a 2 {\displaystyle ={\frac {1}{2a^{2}}}{\frac {x}{x^{2}+a^{2}}}+{\frac {1}{2a^{2}}}\int {\frac {\mathrm {d} x}{x^{2}+a^{2}}}} = 1 2 a 2 x x 2 + a 2 + 1 2 a 3 arctan ⁡ x a + C {\displaystyle ={\frac {1}{2a^{2}}}{\frac {x}{x^{2}+a^{2}}}+{\frac {1}{2a^{3}}}\arctan {\frac {x}{a}}+C}

같이 보기 [ 편집 ]

각주 [ 편집 ]

가 나 다 Larson, Ron; Edwards, Bruce (2013). 《Calculus: Early Transcendental Functions》 (영어) 6판. Boston, MA: Cengage Learning. ISBN 978-1-285-77477-0 . LCCN 2013949101. 가 나 다 라 Lax, Peter D.; Terrell, Maria Shea (2014). 《Calculus With Applications》. Undergraduate Texts in Mathematics (영어) 2판. New York, NY: Springer. doi:10.1007/978-1-4614-7946-8. ISBN 978-1-4614-7945-1 . LCCN 2013946572. 가 나 다 라 Stewart, Seán M. (2018년 2월). 《How to Integrate It》 (영어). Cambridge University Press. doi:10.1017/9781108291507. ISBN 978-1-108-41881-2 . 가 나 다 라 마 伍胜健 (2009년 8월). 《数学分析. 第一册》 (중국어). 北京: 北京大学出版社. ISBN 978-7-301-15685-8 . ↑ 伍胜健 (2010년 2월). 《数学分析. 第二册》 (중국어). 北京: 北京大学出版社. ISBN 978-7-301-15876-0 . ↑ Kasube, Herbert E. (1983년 3월). “A Technique for Integration by Parts”. 《The American Mathematical Monthly》 (영어) 90 (3): 210-211. doi:10.2307/2975556. ISSN 0002-9890. JSTOR 2975556.

[적분] 16장. 적분법: 부분적분

728×90

반응형

미분법의 곱법칙(product rule)에 대응되는 부분적분법(integration by parts, IBP)을 알아보자.

※ The IBP

[1] Suppose that u(x) and v(x) are differentiable functions.

[2] The product rule in terms of differentials gives us:

d(uv)=udv+vdu

[3] Rearranging the rule, we can write:

udv=d(uv)-vdu

[4] Integrating both sides with respect to x:

∫udv=uv-∫vdu (integration by parts formula)

부정적분 부분적분

IBP에서 핵심적인 사항은 u와 dv를 적절하게 선별하는 일이다. 그리고 이런 피적분함수를 치환할 때, 경험적으로 ILATE 규약을 활용한다. ILATE란,

Inverse trigonometric

Logarithmic

Algebraic

Trigonometric

Exponential

의 첫 알파벳 글자 모음으로, 가령

와 같이 피적분함수가 합성함수 일 때, ILATE에 근거해 u로 가능성 있는 함수를 선택한다면 algebraic 함수인 x가 exponential 함수인 e^2x보다 우선한다.

– IBP를 시행할 때, u와 dv는 피적분함수를 모두 포함하도록 설정한다.

EXAMPLE 16.1 부정적분 부분적분

부정적분의 부분적분에서 첨가되는 여러 적분상수들은 총합의 개념으로 마지막 결론 부분에서 간단히 C로 제시한다.

점화공식

부분적분을 활용해 n≥2인 정수 n에 대한 점화공식을 증명할 수 있다.

정적분 부분적분

728×90

반응형

[적분] 4. 부분적분

부분적분법

부정적분은 미분의 역작용이므로 모든 적분 공식과 계산 기법들은 미분 공식에서 파생된다. 부분적분 또한 곱의 미분법에서 출발한다. 미분가능한 함수 $f(x)$, $g(x)$에 대해

$$ \{f(x)g(x)\}’=f'(x)g(x)+f(x)g'(x)\Longrightarrow f'(x)g(x)=\{f(x)g(x)\}’-f(x)g'(x) $$

양변을 $x$에 대해 부정적분하면

$$ \int_{}{}f'(x)g(x)\, dx=\int_{}{}\{f(x)g(x)\}’\, dx-\int_{}{}f(x)g'(x)\, dx=f(x)g(x)-\int_{}{}f(x)g'(x)\, dx $$

부분적분을 통해 적분 시에 단순한 형태가 되는 함수와 미분 시에 단순한 형태가 되는 함수의 곱으로 이루어진 함수를 쉽게 적분할 수 있다. 이렇듯 부분적분의 본질적 의미는 원하는 함수의 차수를 높이거나 낮출 수 있다는 것에 있다.

부분적분을 이용한 적분 계산

부분적분은 특히 다항함수$\times$초월함수 형태나 초월함수$\times$초월한수 형태의 함수를 적분하는 데 많이 사용된다.

다항함수$\times$지수함수 꼴

다항함수를 $g(x)$, 지수함수를 $f(x)$로 놓고 위의 부분적분 공식 그대로 계산하면 된다.

$\int_{}{}xe^x\, dx$ 의 경우

$$ \int_{}{}xe^x\, dx=xe^x-\int_{}{}e^x\, dx=xe^x-e^x=(x-1)e^x+C $$

$\int_{}{}x^2e^x\, dx$ 의 경우

$$ \int_{}{}x^2e^x\, dx=x^2e^x-\int_{}{}2xe^x\, dx=x^2e^x-2\{ (x-1)e^x\}=(x^2-2x+2)e^x+C $$

다향함수$\times$삼각함수 꼴

다항함수를 $g(x)$, 삼각함수를 $f(x)$로 놓고 위의 부분적분 공식 그대로 계산하면 된다.

$\int_{}{}x\sin x\, dx$ 의 경우

$$ \int_{}{}x\sin x\, dx=-x\cos x+\int_{}{}\cos x\, dx=-x\cos x+\sin x+C $$

지수함수$\times$삼각함수 꼴

삼각함수를 $g(x)$, 지수함수를 $f(x)$로 놓고 위의 부분적분 공식 그대로 계산하면 된다.

$\int_{}{}e^x\sin x\, dx$ 의 경우

$$ \int_{}{}e^x\sin x\, dx=e^x\sin x-\int_{}{}e^x\cos x\, dx=e^x\sin x+e^x\cos x-\int_{}{}e^x\sin x\, dx $$

$$ 2\times\int_{}{}e^x\sin x\, dx=e^x\left(\sin x+\cos x\right)\Longrightarrow\int_{}{}e^x\sin x\, dx=\frac{e^x}{2}\left(\sin x+\cos x\right) +C $$

다항함수$\times$로그함수 꼴

로그함수를 $g(x)$, 다항함수를 $f(x)$로 놓고 위의 부분적분 공식 그대로 계산하면 된다.

$\int_{}{}\ln x\, dx$ 의 경우

$$ \int_{}{}\ln x\, dx=\int_{}{}(x)’\ln x\, dx=x\ln x-\int_{}{}\frac{x}{x}\, dx=x\ln x-x+C $$

$\int_{}{}x^r\ln x\, dx$ 의 경우

$$ \int_{}{}x^r\ln x\, dx=\frac{1}{1+r}x^{1+r}\ln x-\int_{}{}\frac{x^{1+r}}{(1+r)}\frac{1}{x}\, dx=\frac{x^{1+r}}{1+r}\ln x-\int_{}{}\frac{x^r}{1+r}\, dx=\frac{x^{1+r}}{1+r}\ln x-\frac{x^{1+r}}{(1+r)^2}+C $$

적분

So you have finished reading the 부분적 분 공식 topic article, if you find this article useful, please share it. Thank you very much. See more: 부분적분 그적미적, 정적분 부분적분, 부분적분 예제, 부분적분법 쉽게, 부분적분 문제, 부분적분 3개, 부분적분법 공식, 부분적분 공식 증명

Leave a Comment